\[
\begin{align}
( & - \frac{v^2}{R}\ cos( P_a ) - v\ \Omega\ cos( S_a )\ cos( P_a ), \\
& - \frac{v^2}{R}\ cos( S_a )\ sin( P_a ) - v\ \Omega\ sin( P_a ), \\
& - \frac{v^2}{R}\ sin( S_a )\ sin( P_a ) ) \\
\ \\
- ( & - v\ \Omega\ cos( S_a )\ cos( P_a ) - R \Omega^2 \ cos( P_a ), \\
& - v\ \Omega\ sin( P_a ) - R \Omega^2 \ cos(S_a)\ sin( P_a ), \\
& 0 ) \\
\ \\
=\ & \bigl( \
- \frac{v^2}{R}\ cos( P_a ) + R \Omega^2 \ cos( P_a ), \\
& - \frac{v^2}{R}\ cos( S_a )\ sin( P_a ) + R \Omega^2 \ cos(S_a)\ sin( P_a ), \\
& - \frac{v^2}{R}\ sin( S_a )\ sin( P_a ) \
\bigr) \\
\end{align}
\]
(2) の場合
\( cos( S_a ),\ ccs( P_a ),\ sin( P_a ) \) につぎを代入:
\[
cos( S_a ) = 0 \\
cos( P_a ) = \frac{ P_x }{ R } \\
sin( P_a ) = \frac{ P_z }{ R } \\
\]
\[
\begin{align}
( & - \frac{v^2}{R}\ cos( P_a ) - v\ \Omega\ cos( S_a )\ cos( P_a ), \\
& - \frac{v^2}{R}\ cos( S_a )\ sin( P_a ) - v\ \Omega\ sin( P_a ), \\
& - \frac{v^2}{R}\ sin( S_a )\ sin( P_a ) ) \\
\ \\
- ( & - v\ \Omega\ cos( S_a )\ cos( P_a ) - R \Omega^2 \ cos( P_a ), \\
& - v\ \Omega\ sin( P_a ) - R \Omega^2 \ cos(S_a)\ sin( P_a ), \\
& 0 ) \\
\ \\
=\ & \bigl( \
- \frac{v^2}{R}\ cos( P_a ) + R \Omega^2 \ cos( P_a ), \\
& - \frac{v^2}{R}\ cos( S_a )\ sin( P_a ) + R \Omega^2 \ cos(S_a)\ sin( P_a ), \\
& - \frac{v^2}{R}\ sin( S_a )\ sin( P_a ) \
\ \\ \ \\
( & - \frac{v^2}{R}\ \frac{ P_x }{ R } , \\
& - v\ \Omega\ \frac{ P_z }{ R }, \\
& - \frac{v^2}{R}\ sin( S_a )\ \frac{ P_z }{ R } ) \\
\ \\
+ ( &- R \Omega^2 \ \frac{ P_x }{ R }, \\
& - v\ \Omega\ \frac{ P_z }{ R } , \\
& 0 ) \\
\ \\
=\ & \bigl( \
- \frac{v^2}{R}\ \frac{ P_x }{ R } - R \Omega^2 \ \frac{ P_x }{ R }, \\
& -- 2\ v\ \Omega\ \frac{ P_z }{ R } , \\
& - \frac{v^2}{R}\ sin( S_a )\ \frac{ P_z }{ R } \
\bigr) \\
\end{align}
\]
\( P_z > 0 \) のとき:
\( sin( S_a ) = 1 \) を代入:
\[
\begin{align}
( & - \frac{v^2}{R}\ \frac{ P_x }{ R } , \\
& - v\ \Omega\ \frac{ P_z }{ R }, \\
& - \frac{v^2}{R}\ sin( S_a )\ \frac{ P_z }{ R } ) \\
\ \\
+ ( &- R \Omega^2 \ \frac{ P_x }{ R }, \\
& - v\ \Omega\ \frac{ P_z }{ R } , \\
& 0 ) \\
\ \\
=\ & \bigl( \
- \frac{v^2}{R}\ cos( P_a ) + R \Omega^2 \ cos( P_a ), \\
& - \frac{v^2}{R}\ cos( S_a )\ sin( P_a ) + R \Omega^2 \ cos(S_a)\ sin( P_a ), \\
& - \frac{v^2}{R}\ sin( S_a )\ sin( P_a ) \
\bigr) \\
\ \\ \ \\
( & - \frac{v^2}{R}\ \frac{ P_x }{ R } , \\
& - v\ \Omega\ \frac{ P_z }{ R }, \\
& - \frac{v^2}{R}\ \frac{ P_z }{ R } ) \\
\ \\
+ ( &- R \Omega^2 \ \frac{ P_x }{ R }, \\
& - v\ \Omega\ \frac{ P_z }{ R } , \\
& 0 ) \\
\ \\
=\ & \bigl( \
- \frac{v^2}{R}\ \frac{ P_x }{ R } - R \Omega^2 \ \frac{ P_x }{ R }, \\
& -- 2\ v\ \Omega\ \frac{ P_z }{ R } , \\
& - \frac{v^2}{R}\ \frac{ P_z }{ R } \
\bigr) \\
\end{align}
\]
\( P_z < 0 \) のとき:
\( sin( S_a ) = -1 \) を代入:
\[
\begin{align}
( & - \frac{v^2}{R}\ \frac{ P_x }{ R } , \\
& - v\ \Omega\ \frac{ P_z }{ R }, \\
& - \frac{v^2}{R}\ sin( S_a )\ \frac{ P_z }{ R } ) \\
\ \\
+ ( &- R \Omega^2 \ \frac{ P_x }{ R }, \\
& - v\ \Omega\ \frac{ P_z }{ R } , \\
& 0 ) \\
\ \\
=\ & \bigl( \
- \frac{v^2}{R}\ \frac{ P_x }{ R } - R \Omega^2 \ \frac{ P_x }{ R }, \\
& -- 2\ v\ \Omega\ \frac{ P_z }{ R } , \\
& - \frac{v^2}{R}\ sin( S_a )\ \frac{ P_z }{ R } \
\bigr) \\
\ \\ \ \\
( & - \frac{v^2}{R}\ \frac{ P_x }{ R } , \\
& - v\ \Omega\ \frac{ P_z }{ R }, \\
& \frac{v^2}{R}\ \frac{ P_z }{ R } ) \\
\ \\
+ ( &- R \Omega^2 \ \frac{ P_x }{ R }, \\
& - v\ \Omega\ \frac{ P_z }{ R } , \\
& 0 ) \\
\ \\
=\ & \bigl( \
- \frac{v^2}{R}\ \frac{ P_x }{ R } - R \Omega^2 \ \frac{ P_x }{ R }, \\
& - 2\ v\ \Omega\ \frac{ P_z }{ R } , \\
& \frac{v^2}{R}\ \frac{ P_z }{ R } \
\bigr) \\
\ \\ \ \\
\end{align}
\]
(4) の場合
\[
cos( S_a ) = \frac{ P_y }{ \sqrt{ R^2 - P_x^2 } } \\
sin( S_a ) = \frac{ P_z }{ \sqrt{ R^2 - P_x^2 } } \\
cos( P_a ) = \frac{P_x }{R } \\
sin( P_a ) = \frac{ \sqrt{ R^2 - P_x^2 } }{ R } \\
\]
\[
\begin{align}
( & - \frac{v^2}{R}\ \frac{P_x }{R } - v\ \Omega\ \frac{ P_y }{ \sqrt{ R^2 - P_x^2 } }\ \frac{P_x }{R }, \\
& - \frac{v^2}{R}\ \frac{ P_y }{ \sqrt{ R^2 - P_x^2 } }\ \frac{ \sqrt{ R^2 - P_x^2 } }{ R } - v\ \Omega\ \frac{ \sqrt{ R^2 - P_x^2 } }{ R }, \\
& - \frac{v^2}{R}\ \frac{ P_z }{ \sqrt{ R^2 - P_x^2 } }\ \frac{ \sqrt{ R^2 - P_x^2 } }{ R } ) \\
\ \\
- ( & - v\ \Omega\ \frac{ P_y }{ \sqrt{ R^2 - P_x^2 } }\ \frac{P_x }{R } - R \Omega^2 \ \frac{P_x }{R }, \\
& - v\ \Omega\ \frac{ \sqrt{ R^2 - P_x^2 } }{ R } - R \Omega^2 \ \frac{ P_y }{ \sqrt{ R^2 - P_x^2 } }\ \frac{ \sqrt{ R^2 - P_x^2 } }{ R }, \\
& 0 ) \\
\ \\
=\ & \bigl( \
- \frac{v^2}{R}\ cos( P_a ) + R \Omega^2 \ cos( P_a ), \\
& - \frac{v^2}{R}\ cos( S_a )\ sin( P_a ) + R \Omega^2 \ cos(S_a)\ sin( P_a ), \\
& - \frac{v^2}{R}\ sin( S_a )\ sin( P_a ) \
\bigr) \\
\end{align}
\]
\[
\begin{align}
\bigl(
& - \frac{v^2\ P_x}{R^2} - v\ \Omega\ \frac{ P_x\ P_y }{ R\ \sqrt{ R^2 - P_x^2 } }\ , \\
& - \frac{v^2\ P_y}{R^2} - v\ \Omega\ \frac{ \sqrt{ R^2 - P_x^2 } }{ R }, \\
& - \frac{v^2\ P_z}{R^2}
\bigr) \\
\ \\
- ( & - v\ \Omega\ \frac{ P_x\ P_y }{ R\ \sqrt{ R^2 - P_x^2 } } - \Omega^2\ P_x, \\
& - v\ \Omega\ \frac{ \sqrt{ R^2 - P_x^2 } }{ R } - \Omega^2 \ P_y, \\
& 0 ) \\
\ \\
=
\bigl(
& - \frac{v^2\ P_x}{R^2} - 2\ v\ \Omega\ \frac{ P_x\ P_y }{ R\ \sqrt{ R^2 - P_x^2 } } - \Omega^2\ P_x, \\
& - \frac{v^2\ P_y}{R^2} - 2\ v\ \Omega\ \frac{ \sqrt{ R^2 - P_x^2 } }{ R } - \Omega^2 \ P_y, \\
& - \frac{v^2\ P_z}{R^2}
\bigr) \\
\end{align}
\]
|